Lithium Pellet Injection Experiments
نویسندگان
چکیده
A pellet enhanced performance (PEP) mode, showing significantly reduced core transport, is regularly obtained after the injection of deeply penetrating lithium pellets into Alcator C-Mod discharges. These transient modes, which typically persist about two energy confinement times, are characterized by a steep pressure gradient (4, <a/5) in the inner third of the plasma, indicating the presence of an internal transport barrier. Inside this barrier, particle and energy diffusivities are greatly reduced, with ion thermal diffusivity dropping to near neo-classical values. Meanwhile, the global energy confinement time shows a 30% improvement over ITER89-P L-mode scaling. The addition of ICRF auxiliary heating shortly after the pellet injection leads to high fusion reactivity with neutron rates enhanced by an order of magnitude over L-mode discharges with similar input powers. A diagnostic system for measuring equilibrium current density profiles of tokamak plasmas, employing high speed (-1 km/s) lithium pellets, is also presented. Because ions are confined to move along field lines, imaging the Li+ emission from the toroidally extended pellet ablation cloud gives the direction of the magnetic field. To convert from temporal to radial measurements, the 3-D trajectory of the pellet is determined using a stereoscopic tracking system. These measurements, along with external magnetic measurements, are used to solve the Grad-Shafranov equation for the magnetic equilibrium of the plasma. This diagnostic is used to determine the current density profile of PEP modes by injection of a second pellet during the period of good confinement. This measurement indicates that a region of reversed magnetic shear exists at the plasma core. This current density profile is consistent with TRANSP calculations for the bootstrap current created by the pressure gradient. MHD stability analysis indicates that these plasmas are near both the n = oo and the n = 1 marginal stability limits. Thesis Supervisor: Earl S. Marmar Title: Senior Research Scientist
منابع مشابه
Lithium Pellet Injection Experiments on the Alcator C-mod Tokamak Lithium Pellet Injection Experiments on the Alcator C-mod Tokamak Lithium Pellet Injection Experiments on the Alcator C-mod Tokamak
A pellet enhanced performance (PEP) mode, showing significantly reduced core transport, is regularly obtained after the injection of deeply penetrating lithium pellets into Alcator C-Mod discharges. These transient modes, which typically persist about two energy confinement times, are characterized by a steep pressure gradient (p <; a/5) in the inner third of the plasma, indicating the presence...
متن کاملA compact lithium pellet injector for tokamak pedestal studies in ASDEX Upgrade.
Experiments have been performed at ASDEX Upgrade, aiming to investigate the impact of lithium in an all-metal-wall tokamak and attempting to enhance the pedestal operational space. For this purpose, a lithium pellet injector has been developed, capable of injecting pellets carrying a particle content ranging from 1.82 × 10(19) atoms (0.21 mg) to 1.64 × 10(20) atoms (1.89 mg). The maximum repeti...
متن کاملGABAA receptors in the dorsal hippocampus are involved in sate-dependent learning induced by lithium in mice
These experiments examined the effects of pre-test intra dorsal hippocampus (intra-CA1) administration of GABAA receptor agonist and antagonist, muscimol and bicuculline respectively, on state-dependent learning induced by lithium. Male NMRI mice were trained in a one-trial step-down inhibitory avoidance task, and immediately after training they received IP injections of either saline (10 mL/kg...
متن کاملGABAA receptors in the dorsal hippocampus are involved in sate-dependent learning induced by lithium in mice
These experiments examined the effects of pre-test intra dorsal hippocampus (intra-CA1) administration of GABAA receptor agonist and antagonist, muscimol and bicuculline respectively, on state-dependent learning induced by lithium. Male NMRI mice were trained in a one-trial step-down inhibitory avoidance task, and immediately after training they received IP injections of either saline (10 mL/kg...
متن کاملWall conditioning with impurity pellet injection on TFTR
Solid lithium and boron pellets have been injected into TFTR plasmas to improve plasma performance by coating the graphite inner wall bumper limiter with a small amount of lower Z pellet material, which reduces the influx of carbon from the walls and reduces the edge electron density. This new wall conditioning technique has been applied successfully when continued He conditioning discharges, w...
متن کامل